P đạt giá trị lớn nhất \( \Leftrightarrow (x-\sqrt{x}+1) \) nhỏ nhất.
Mà \(x ≥0 \forall x \Rightarrow (x-\sqrt{x}+1)_{min} \Leftrightarrow x=0 \)
\( \Rightarrow P_{min}=\dfrac{1}{0-0+1}=1 \Leftrightarrow x=0\)
Vậy \(P_{min} =1 \Leftrghtarrow x=0\).
Để P đạt GTLN
\(\Leftrightarrow x-\sqrt{x}+1\) đạt GTNN
\(\Leftrightarrow\left(\sqrt{x}^2-2\sqrt{x}\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\) đạt GTNN
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) đạt GTNN
Nhận xét: \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\forall x\inĐK\)
\(\Rightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\inĐK\) hay \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\inĐK\)
\(\Rightarrow Pmin=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
Vậy P đạt giá trị nhỏ nhất bằng 3/4 khi x=1/4