Áp dụng bất đẳng thức AM - GM có:
\(A=\dfrac{2\sqrt{a}}{a+1}\le\dfrac{2\sqrt{a}}{2\sqrt{a}}=1\)
Dấu " = " khi a = 1
Vậy \(MAX_A=1\) khi a = 1
đk a>=0
\(A=\dfrac{2\sqrt{a}}{a+1}=\dfrac{\left(a+1\right)-\left(a-2\sqrt{a}+1\right)}{a+1}=1-\dfrac{\left(\sqrt{a}-1\right)^2}{a+1}\)a>=0 => a+1>0
\(\left(\sqrt{a}-1\right)^2\ge0\)
\(\Rightarrow1-\dfrac{\left(\sqrt{a}-1\right)^2}{a+1}\le1\)
\(A\le1\) đẳng thưc khi \(\sqrt{a}-1=0\Rightarrow a=1\)