Cho A= (\(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)) : (\(\frac{2\sqrt{x-2}}{\sqrt{x-3}}-1\))
a. Rút gọn A b. Tìm x để A < \(-\frac{1}{2}\) c. Tìm x để A đạt GTNN
Cho B= (\(\frac{\sqrt{x+1}}{\sqrt{x-1}}-\frac{\sqrt{x-1}}{\sqrt{x+1}}-\frac{8\sqrt{x}}{x-1}\)) : (\(\frac{\sqrt{x-x-3}}{x-1}-\frac{1}{\sqrt{x-1}}\))
a. Rút gọn B b. Tính A với x=6-2\(\sqrt{5}\) c. CMR: A <_1
Cho P= \(\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x-1}}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
a. Rút gọn P b. Tính giá trị của P khi x= 7-4\(\sqrt{3}\) c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó
Giải các phuong trình sau
a) \(\sqrt{1-6x+9x^2}\) =5
b) \(\sqrt{x^2-4x+4}\) =7
c) \(\sqrt{25-10x+x^2}\) = 7-2x
d)\(\sqrt{x^2+6x+9}\) = 3x-1
chứng minh √3-2 √2 - √2= -1
rút gọn √6-2√5 -√6+2√5
vs giá trị nào của x thì mỗi căn thức có nghĩa
\(\sqrt{\dfrac{x-1}{x+3}}\) b \(\sqrt{7-x}\) + 2 \(\sqrt{a}+1\)
Với giá trị nào của x thì các căn thức trên có nghĩa :
a)\(\sqrt{3x^2+1}\)
b)\(\sqrt{4x^2-4x+1}\)
c)\(\sqrt{\dfrac{3}{x+4}}\)
h)\(\sqrt{x^2-4}\)
i) \(\sqrt{\dfrac{2+x}{5-x}}\)
Tìm \(x\), biết :
a) \(\sqrt{9x^2}=2x+1\)
b) \(\sqrt{x^2+6x+9}=3x-1\)
c) \(\sqrt{1-4x+4x^2}=5\)
d) \(\sqrt{x^4}=7\)
Rút gọn
a) A= 2x + \(\sqrt{x^2-4x+1}\)
b) B=\(\sqrt{x}-\sqrt{\left(1+\sqrt{x}\right)^2}\)
c) C=\(\sqrt{x}+\sqrt{\left(x-2\right)^2}\)
d)D=\(\sqrt{x^2-6x+9+x-1}\) với x<3
1, Rút gọn biểu thức A =\(\sqrt{x^2-x+\frac{1}{4}}\)
2, Rút gọn biểu thức B=\(\sqrt{x^2}+\sqrt{x^6}\)
3,Tính giá trị của biểu thức C=\(\sqrt{3-2\sqrt{ }2}-\sqrt{6-4\sqrt{ }2}\)
4, Tính gí trị nhỏ nhất của biểu thức D=\(\sqrt{4x^2-4x+1+3}\)
5, Tìm x , biết \(\sqrt{x^2-6x+9+7x=13}\)
6, Tìm các giá trị x sao cho \(\sqrt{x>x}\)
làm ơn giải hộ mk bài này vs
\(\sqrt{3x-2}+\sqrt{x-1}\)
\(\sqrt{x+9}=5-\sqrt{2x+4}\)
\(x^2+\sqrt{x+1}=1\)
\(x-\sqrt{4x-3}=2\)
\(x+\sqrt{2x+15}=0\)
\(x^2-6x+\sqrt{x^2-6x+7}=5\)
a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2