`a, A = (3x(x+1))/(x+1)^2 = (3x)/(x+1)`
Thay `x = -4` ta có: `(3.(-4))/(-4+1) = 4`.
`b, B = (b(a-b))/((a-b)(a+b)) = b/(a+b)`
Thay `a = 4; b =-2`
`-2/(4-2) = -1`
`a, A = (3x(x+1))/(x+1)^2 = (3x)/(x+1)`
Thay `x = -4` ta có: `(3.(-4))/(-4+1) = 4`.
`b, B = (b(a-b))/((a-b)(a+b)) = b/(a+b)`
Thay `a = 4; b =-2`
`-2/(4-2) = -1`
Tìm giá trị của phân thức:
a) \(\dfrac{{{x^2} - 2x + 1}}{{x + 2}}\) tại \(x = - 3\), \(x = 1\) b) \(\dfrac{{xy - 3{y^2}}}{{x + y}}\) tại \(x = 3\), \(y = - 1\)
Rút gọn các phân thức sau:
a) \(\dfrac{{3{x^2}y}}{{2x{y^5}}}\)
b) \(\dfrac{{3{x^2} - 3x}}{{x - 1}}\)
c) \(\dfrac{{a{b^2} - {a^2}b}}{{2{a^2} + a}}\)
d) \(\dfrac{{12\left( {{x^4} - 1} \right)}}{{18\left( {{x^2} - 1} \right)}}\)
Cho biểu thức \(P = \dfrac{{{x^2} - 1}}{{2x + 1}}\)
a) Tính giá trị của biểu thức tại \(x = 0\)
b) Tại \(x = - \dfrac{1}{2}\), giá trị của biểu thức có xác định không? Tại sao?
Viết điều kiện xác định của mỗi phân thức:
a) \(\dfrac{1}{{a + 4}}\) b) \(\dfrac{{x{y^2}}}{{x - 2y}}\)
Rút gọn các phân thức sau:
a) \(\dfrac{{3{x^2} + 6xy}}{{6{x^2}}}\) b) \(\dfrac{{2{x^2} - {x^3}}}{{{x^2} - 4}}\) c) \(\dfrac{{x + 1}}{{{x^3} + 1}}\)
Mỗi cặp phân thức sau có bằng nhau không? Tại sao?
a) \(\dfrac{{3ac}}{{{a^3}b}}\) và \(\dfrac{{6c}}{{2{a^2}b}}\)
b) \(\dfrac{{3ab - 3{b^2}}}{{6{b^2}}}\) và \(\dfrac{{a - b}}{{2b}}\)
Mỗi cặp phân thức sau đây có bằng nhau không? Tại sao?
a) \(\dfrac{{x{y^2}}}{{xy + y}}\) và \(\dfrac{{xy}}{{x + 1}}\) b) \(\dfrac{{xy - y}}{x}\) và \(\dfrac{{xy - x}}{y}\)
Xét các phân thức \(P = \dfrac{{{x^2}y}}{{x{y^2}}}\), \(Q = \dfrac{x}{y}\), \(R = \dfrac{{{x^2} + xy}}{{xy + {y^2}}}\) .
a) Các phân thức trên có bằng nhau không? Tại sao?
b) Có thể biến đổi như thế nào nếu chuyển \(Q\) thành \(P\) và \(R\) thành \(Q\).
Xét hai phân thức \(M = \dfrac{x}{y}\) và \(N = \dfrac{{{x^2} + x}}{{xy + y}}\)
a) Tính giá trị của các phân thức trên khi \(x = 3\), \(y = 2\) và khi \(x = - 1\), \(y = 5\).
Nêu nhận xét về giá trị của \(M\) và \(N\) khi cho \(x\) và \(y\) nhận những giá trị nào đó (\(y \ne 0\) và \(xy - y \ne 0\)).
b) Nhân tử thức của phân thức này với mẫu thức của phân thức kia, rồi so sánh hai đa thức nhận được.