\(N=\left|x-4\right|\left(2-\left|x-4\right|\right)\)
\(=-\left(\left|x-4\right|\right)^2+2\left|x-4\right|\)
\(=-\left[\left(\left|x-4\right|\right)^2-2\left|x-4\right|+1\right]+1\)
\(=-\left(\left|x-4\right|-1\right)^2+1\) \(\le1\)
Dấu = xảy ra \(\Leftrightarrow\left(\left|x-4\right|-1\right)^2=0\Leftrightarrow\left|x-4\right|-1=0\)
\(\Leftrightarrow\left|x-4\right|=1\Leftrightarrow\left[{}\begin{matrix}x-4=1\\x-4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
Vậy \(Max_N=1\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
\(G=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
\(=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)
\(=\left(x^2+4x\right)^2-25\ge-25\)
Dấu = xảy ra \(\Leftrightarrow x^2+4x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy \(Min_G=-25\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)