Giải:
Ta có:
\(\left\{{}\begin{matrix}\left|x+3\right|\ge x+3\\\left|x-2\right|\ge0\\\left|x-5\right|\ge5-x\end{matrix}\right.\)
\(\Leftrightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge x+3+5-x\)
\(\Leftrightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge3+5\)
\(\Leftrightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge8\)
\(\Leftrightarrow P_{Min}=8\)
Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy ...
Do : | \(x+3\) | + | \(x-5\) | = | x + 3| + | 5 - x | ≥ | x + 3 + 5 - x | = 8
| x - 2 | ≥ 0
⇒ | \(x+3\) | + | \(x-5\) | + | x - 2 | ≥ 8
⇒ \(P_{Min}=8\) ⇔ - 3 ≤ x ≤ 5 và x = 2