ta tính \(y'=\frac{x^2+1-2x^2}{\left(x^2+1\right)^2}=\frac{1-x^2}{\left(x^2+1\right)^2}\)
ta giải phương trình y'=0
suy x=1;x=-1
ta tính \(y''=\frac{-2x\left(x^2+1\right)^2-4x\left(x^2+1\right)\left(1-x^2\right)}{\left(x^2+1\right)^4}=\frac{-2x\left(x^2+1\right)-4x\left(1-x^2\right)}{\left(1+x^2\right)^3}=\frac{2x^3-6x}{\left(1+x^2\right)^3}=\frac{-2x\left(x^2+2\right)}{\left(1+x^2\right)^3}\)
ta có \(y''\left(1\right)=-30\)hàm số đạt cực tiểu tại x=-1