Ta có: \(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\) \((*)\)
\(*)\) Nếu \(x⋮3\Leftrightarrow x=3\left(x\in P\right)\) thay vào \((*)\) ta được:
\(3^2-1=2y^2=8\Leftrightarrow y=2\left(y\in P\right)\)
\(*)\) Nếu \(x\) \(⋮̸\) \(3\Leftrightarrow x\) có 2 dạng là \(\left[{}\begin{matrix}3k+1\\3k+2\end{matrix}\right.\) \(\left(k\in N\right)\)
\(-\) Với \(x=3k+1\) thì: \(2y^2=x^2-1=\left(x-1\right)\left(x+1\right)\)
\(=\left(3k+1-1\right)\left(3k+1+1\right)=3k\left(3k+2\right)\) \(⋮\) \(3\)
\(-\) Với \(x=3k+2\) thì: \(2y^2=x^2-1=\left(x-1\right)\left(x+1\right)\)
\(=\left(3k+2-1\right)\left(3k+2+1\right)\)
\(=\left(3k+1\right)\left(3k+3\right)=3\left(3k+1\right)\left(k+1\right)⋮3\)
Do đó \(\forall x\) \(⋮̸\) \(3\Leftrightarrow x^2-1⋮3\Rightarrow2y^2⋮3.\) Mà \(\left(2;3\right)=1\)
Nên \(y^2⋮3.\) Do \(y\in P\) \(\Leftrightarrow y⋮3\Leftrightarrow y=3\)
Thay \(y=3\) vào \((*)\) ta có:
\(x^2-1=2.3^2=18\Leftrightarrow x^2=19\Leftrightarrow x=\sqrt{19}\) (không thỏa mãn)
Vậy \(\left(x,y\right)=\left(3;2\right)\)