\(2x^2+y^2-2xy-8x+16=0\)
\(\Leftrightarrow\left(x^2-8x+16\right)+\left(x^2-2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(x-y\right)^2=0\)
Do: \(\left\{{}\begin{matrix}\left(x-4\right)^2\ge0\\\left(x-y\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-4\right)^2+\left(x-y\right)^2\ge0\)
Mặt khác: \(\left(x-4\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x-y=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=4\)
Vậy: ...