Tìm các số nguyên x,y,z thỏa mãn:
\(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}\)
Cho x,y,z là các số thực dương thỏa mãn xyz = 1. Tìm GTLN của biểu thức:
\(P=\frac{1}{\left(3x+1\right)\left(y+z\right)+x}+\frac{1}{\left(3y+1\right)\left(x+z\right)+y}+\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\)
+1GP cho cách chứng minh bằng $\text{C-S}$ hoặc $\text{AM-GM}$ - Hãy thử ngay$!?$
Bài toán. Cho $x,y,z>0.$ Chứng minh: $$\frac{1}{2}+\frac{1}{2}{r}^{2}+\frac{1}{3}\,{p}^{2}+\frac{2}{3}\,{q}^{2}-\frac{1}{6} Q-\frac{3}{2} r-\frac{2}{3}q-\frac{1}{6}pq-\frac{5}{3} \,pr\geqslant 0$$
với $$\Big[p=x+y+z,q=xy+zx+yz,r=xyz,Q= \left( x-y \right) \left( y-z \right)
\left( z-x \right)\Big ]$$ (Xuất xứ: Sáng tác.)
Một cách chứng minh bằng SOS:
$$\text{VT} = \frac{1}{12}\,\sum \left( 3\,{z}^{2}+1 \right) \left( x-y \right) ^{2}+\frac{1}{6} \sum\,y
\left( y+z \right) \left( x-1 \right) ^{2}+\frac{1}{2}\, \left( xyz-1
\right) ^{2} \geqslant 0$$
Ngoài ra$,$ có cách chứng minh bằng Cauchy Schwarz:D Ai có thể tìm thấy nó$?$
1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)
b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)
d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)
e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)
f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)
g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)
Cho x,y,z là các số thực dương thỏa mãn xyz=1. CMR:
\(\frac{1}{\left(1+x^3\right)}+\frac{1}{\left(1+y^3\right)}+\frac{1}{\left(1+z^3\right)}\ge\frac{3}{8}\)
Cho x , y , z > 0 và xyz = 1 . Tìm GTLN của
\(H=\frac{1}{\left(x+1\right)^2+y^2+1}+\frac{1}{\left(y+1\right)^2+z^2+1}+\frac{1}{\left(z+1\right)^2+x^2+1}\)
Cho 3 số x,y,z khác 0 đồng thời thỏa mãn \(x+y+z=\frac{1}{2}\);\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\)
Tính giá trị của Q=\(\left(y^{2017}+z^{2017}\right)\left(z^{2019}+x^{2019}\right)\left(x^{2021}+y^{2021}\right)\)
cho x,y,z ≠ 0 thỏa mãn \(x+y+z=\frac{1}{2}\); \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xyz}=4\); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\) .
Tính \(\left(y^{2017}+z^{2017}\right)\left(z^{2019}+x^{2019}\right)\left(x^{2021}+y^{2021}\right)\)
cho x,y,z > 0 , xyz = 1. Tìm GTNN của: \(A=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)