tìm các số nguyên m,n thõa mãn m(m+1)(m+2)=n^2
Cho m,n là các số thực không âm thỏa mãn \(m^2+n^2=4\).Tìm Min,Max:
\(P=\sqrt{3-m^2}+\sqrt{3-n^2}\)
Bài 1: Tìm m để phương trình sau có nghiệm duy (x,y) thỏa mãn x,y là các số nguyên\(\left\{{}\begin{matrix}\left(m+1\right)x-6y=4\\x-my=2\end{matrix}\right.\)
Xét các số thực a,b,c với \(b\ne a+c\) sao cho PT bậc 2 \(ax^2+bx+c=0\) có 2 nghiệm thực m,n thỏa mãn \(0\le m,n\le1\). Tìm GTLN và GTNN của biểu thức
\(M=\dfrac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)
Cho phương trình \(x^2-2mx+4m-4\). Tìm m để phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thõa mãn \(x_1^2+2mx_2-8m+5=0\).
pt: \(x^2-2\left(m-1\right)x+m-3=0\) (m là tham số)
phương trình có hai nghiệm phân biệt tìm giá trị nguyên của m sao cho pt có 2 nghiệm thỏa mãn:
\(\left(\dfrac{1}{x_1}-\dfrac{1}{x_2}\right)^2=\dfrac{\sqrt{11}}{2}\)
cho pt x2+2x+m-5=0 (1) vs m là tham số
a, giải pt (1) khi m=2
b, tìm các giá trị của m để pt (1) có 2 nghiệm x1;x2 thỏa mãn \(x_1^2x_2+x_1x_2^2=8\)
Cho (P) y=-x2 và (d)y=2x+m-3
b) Tìm điều kiện tham số m để (d) cắt (P) tại 2 điểm phân biệt M(x1,y1);N(x1;y2) thỏa mãn (y1+2x2+m)(y2+2x1-3m)=-51
Cho phương trình x2 - 2(m + 1) + m2 + 1 = 0, với m là tham số. Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt x1, x2 (x1<x2) thoả mãn :
(2x2 - 3)2 - (2x2 - 3)2 = 32m - 16