\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\Rightarrow a=10;b=15;c=20.\)
Theo đề bài,có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)và \(a+2b-3c=-20\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}và\) \(a+2b-3c=-20\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
Với \(\dfrac{a}{2}=5\Rightarrow a=10\)
\(\dfrac{2b}{6}=5\Rightarrow\dfrac{b}{3}=5\Rightarrow b=15\)
\(\dfrac{3c}{12}=5\Rightarrow\dfrac{c}{4}=5\Rightarrow c=20\)
\(\text{Theo bài ra ta có : }\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\\ \Rightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\\ a+2b-3c=-20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=5\\\dfrac{2b}{6}=5\\\dfrac{3c}{12}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=10\\\dfrac{b}{3}=5\\\dfrac{c}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
Vậy \(a=10;b=15;c=20\)
\(\)