Bài 2: Giới hạn của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen thi khanh nguyen

Tìm các giới hạn sau :

A=\(\lim\limits_{x\rightarrow0}\frac{\sqrt[n]{1+ax}-1}{x}\left(n\in N^{\cdot},a\ne0\right)\)

B=\(\lim\limits_{x\rightarrow0}\frac{\sqrt[n]{1+ax}-1}{\sqrt[m]{1+bx}-1}\) với\(ab\ne0\)

C=\(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+\alpha x}\sqrt[3]{1+\beta x}\sqrt[4]{1+\gamma x}-1}{x}\) với\(\alpha\beta\gamma\ne0\)

Nguyễn Việt Lâm
1 tháng 4 2020 lúc 10:34

\(A=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}}{1}=\frac{a}{n}\)

\(B=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-1}{\left(1+bx\right)^{\frac{1}{m}}-1}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}}{\frac{b}{m}\left(1+bx\right)^{\frac{1-m}{m}}}=\frac{am}{bn}\)

\(C=\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+bx}\sqrt[4]{1+cx}\left(\sqrt{1+ax}-1\right)+\sqrt[4]{1+cx}\left(\sqrt[3]{1+bx}-1\right)+\left(\sqrt[4]{1+cx}-1\right)}{x}\)

\(C=\lim\limits_{x\rightarrow0}\sqrt[3]{1+bx}\sqrt[4]{1+cx}.\frac{\sqrt{1+ax}-1}{x}+\lim\limits_{x\rightarrow0}\sqrt[4]{1+cx}.\frac{\sqrt[3]{1+bx}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt[4]{1+cx}-1}{x}\)

Từ câu A ta có: \(\lim\limits_{x\rightarrow0}\frac{\sqrt[n]{1+ax}-1}{x}=\frac{a}{n}\)

\(\Rightarrow C=\frac{a}{2}+\frac{b}{3}+\frac{c}{4}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
B.Trâm
Xem chi tiết
lu nguyễn
Xem chi tiết
lu nguyễn
Xem chi tiết
B.Trâm
Xem chi tiết
lu nguyễn
Xem chi tiết
lu nguyễn
Xem chi tiết
Thu Hiền
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Trần Phương Thảo
Xem chi tiết