Tìm điều kiện xác định của các biểu thức: a) \(\sqrt{\dfrac{-10}{5-4x}}\) b)\(\sqrt{\dfrac{2x-5}{x+2}}\) c)\(\sqrt{2-x^2}\) d)\(\sqrt{1-\sqrt{x-1}}\) |
Tìm điều kiện xác định của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\)- \(\sqrt[3]{2x-1}\)
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Cho biểu thức \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm điều kiện xác định của \(A\)
b) Tính giá trị của biểu thức \(A\) khi \(x=0\)
c) Rút gọn biểu thức \(A\)
d) Tìm \(x\) để \(A=-\dfrac{8}{5}\)
e) Tìm \(x\) để \(A=\sqrt{x}-\dfrac{18}{5}\)
f) Tìm điều kiện của \(x\) để \(A< 0\)
g) Tìm điều kiện của \(x\) để \(A>0\)
h) Tìm tập hợp các số tự nhiên \(x\) để \(A>0\)
k) Chứng minh rằng \(A>-5\)
m) Tìm điều kiện của \(x\) để\(A>-3\)
n*) Tìm giá trị lớn nhất của biểu thức \(A\)
p*) Xét biểu thức \(M=A-\dfrac{27}{\sqrt{x}+3}\). Tìm giá trị nhỏ nhất của biểu thức \(M\)
q*) Tìm các số tự nhiên \(x\) để \(A\) là số nguyên
Bài 1. Tìm điều kiện để các biểu thức sau có nghĩa:
a. \(\sqrt{2+8x}\).
b. \(\sqrt{\dfrac{-1}{5}x+9}\)
c.\(\sqrt{11-7x}\)
Bài 2. Rút gọn các biểu thức sau:
a. \(\sqrt{48a}\) . \(\sqrt{3a}\) \(-2a\) với a \(\ge\) 0
b. \(\dfrac{1}{3}\sqrt{54}-3\sqrt{24}-\dfrac{\sqrt{66}}{\sqrt{11}}\)
Bài 3: Tìm x, biết:
a. \(\sqrt{\left(2x+3\right)^2}=3\)
b. \(\sqrt{4\left(x-2\right)}-4\sqrt{x-2}+\sqrt{9\left(x-2\right)}=4\)
Tìm điều kiện xác định của các biểu thức
a. \(\sqrt{3x-6}\)
b. \(\sqrt{-3x+9}\)
c. \(\sqrt{\dfrac{4}{2x-1}}\)
d. \(\sqrt{\dfrac{-5}{-3x+2}}\)
e. \(\sqrt{\dfrac{5x-3}{-4}}\)
* Cho biểu thức
P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
a. Tìm điều kiện của x để biểu thức P xác định
b. Rút gọn P
c . Tìm các giá trị của x để P<0
Tìm x để biểu thức có nghĩa:
a) \(\frac{1}{\sqrt{x-\sqrt{2x-1}}}\)
b) \(\frac{\sqrt{16-x^2}}{\sqrt{2x+1}}+\sqrt{x^2-8x+8}\)
\(A=\sqrt{x}+7\)
\(B=\sqrt{14-6x}\)
\(C=\sqrt{\frac{1}{x-3}}\)
\(D=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{\sqrt{x}-2}\)
TÌM ĐIỀU KIỆN CỦA X ĐỂ MỖI BIỂU THỨC SAU XÁC ĐỊNH