\(\left\{{}\begin{matrix}x^2+x+3=\dfrac{1}{4}\left(2x+1\right)^2+\dfrac{11}{4}\\\left(2y\right)^2-\left(2x+1\right)^2=11\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y=\pm3\\\left\{{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\end{matrix}\right.\) thử lại ok !
different way
ta có: \(x^2< x^2+x+3< x^2+4x+4\)
\(\Rightarrow x^2< y^2< \left(x+2\right)^2\)
x,y nguyên => y2=(x+1)2
<=> x2+x+3=x2+2x+1
<=> x=2
.......