a, \(\dfrac{b}{5}+\dfrac{1}{10}=\dfrac{1}{a}\)
\(\Leftrightarrow\dfrac{2b}{10}+\dfrac{1}{10}=\dfrac{1}{a}\)
\(\Leftrightarrow\dfrac{2b+1}{10}=\dfrac{1}{a}\)
\(\Leftrightarrow\left(2b+1\right)a=10\)
Vì \(a,b\in Z\Leftrightarrow2b+1\in Z;2b+1\inƯ\left(10\right)\)
Xét ước là ra..
b, \(\dfrac{a}{4}-\dfrac{1}{2}=\dfrac{3}{b}\)
\(\Leftrightarrow\dfrac{a}{4}-\dfrac{2}{4}=\dfrac{3}{b}\)
\(\Leftrightarrow\dfrac{a-2}{4}=\dfrac{3}{b}\)
\(\Leftrightarrow\left(a-2\right)b=12\)
Vì \(a,b\in Z\Leftrightarrow a-2\in Z;a-2;b\inƯ\left(12\right)\)
Xét ước là ra
\(a,\dfrac{b}{5}+\dfrac{1}{10}=\dfrac{1}{a}\)
\(\dfrac{\left(2b+1\right)a}{10a}=\dfrac{10}{10a}\)
\(\text{2ab+a=10}\)
\(\text{a(2b+1)=10}\)
Vì \(\text{a(2b+1)=10}\)nên a và 2b+1 là ước nguyên của 10
=>a;2b+1 thuộc{-10;-5;-2;-1;1;2;5;10}
Lập bảng giá trị
a | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
2b+1 | -1 | -2 | -5 | -10 | 10 | 5 | 2 | 1 |
b | -2 | \(-\dfrac{3}{2}\) | -3 | \(-\dfrac{11}{2}\) | \(\dfrac{9}{2}\) | 2 | \(\dfrac{1}{2}\) | 0 |
Đối chiếu | Chọn | Loại | Chọn | Loại | Loại | Chọn | Loại | Chọn |
Vậy