*, \(A< 1\Rightarrow\dfrac{\sqrt{a}-4}{\sqrt{a}-2}< 1\)
\(\Leftrightarrow\dfrac{\sqrt{a}-4}{\sqrt{a}-2}-1< 0\Leftrightarrow\dfrac{\sqrt{a}-4-1\left(\sqrt{a}-2\right)}{\sqrt{a}-2}< 0\Leftrightarrow\dfrac{-2}{\sqrt{a}-2}< 0\)Do -2<0 nên \(\sqrt{a}-2>0\Leftrightarrow a>4\)
Vậy \(a>4\) thì A<1. câu sau cmtt
\(B=\dfrac{\sqrt{a}-2}{\sqrt{a}+1}< 0\)
Đk do a trong căn\(\Rightarrow a\ge0\Rightarrow\sqrt{a}+1\ge1\)
do B<0 mà mẫu dương nên tử số phải âm hay\(\sqrt{a}-2>0\Leftrightarrow a>4\)
vậy a>4 thì B<0
\(C=\dfrac{a+\sqrt{a}}{3\sqrt{a}-1}=\dfrac{6}{5}\) ở đây là dạng pt nên ta quy đồng khử mẫu thôi
\(\Leftrightarrow\dfrac{5\left(a+\sqrt{a}\right)}{5\left(3\sqrt{a}-1\right)}=\dfrac{6\left(3\sqrt{a}-1\right)}{5\left(3\sqrt{a}-1\right)}\Leftrightarrow5a+5\sqrt{a}=18\sqrt{a}-6\Leftrightarrow\\ 5a-13\sqrt{a}+6=0\)
ở pt này ta có thể làm bằng nhiều cách. nhưng mk sẽ là cho bạn bằng cách lớp 9 nha đó là đặt ẩn phụ
Ta đặt \(\sqrt{a}=t\ge0\)
pt mới là \(5t^2-13t+6=0\Leftrightarrow\left[{}\begin{matrix}t=2\left(tm\right)\\t=\dfrac{3}{5}\left(tm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=4\\a=\dfrac{9}{25}\end{matrix}\right.\)
Vậy.......
chỗ nào không hiểu bạn pm mình nha