Lời giải:
a)
\(\frac{1}{p^2-4p-5}+\frac{2p}{p-5}=\frac{1}{p(p-5)+(p-5)}+\frac{2p}{p-5}\)
\(=\frac{1}{(p+1)(p-5)}+\frac{2p(p+1)}{(p-5)(p+1)}=\frac{1+2p(p+1)}{(p+1)(p-5)}\)
\(=\frac{2p^2+2p+1}{p^2-4p-5}\)
b) \(x+\frac{3x}{x+2}+2=(x+2)+\frac{3x}{x+2}=\frac{(x+2)^2+3x}{x+2}\)
\(=\frac{x^2+7x+4}{x+2}\)
c) \(\frac{x}{x+y}+\frac{4}{x^2+3xy+2y^2}+\frac{-3x}{x+2y}\)
\(=\frac{x(x+2y)}{(x+y)(x+2y)}+\frac{4}{(x+y)(x+2y)}+\frac{-3x(x+y)}{(x+y)(x+2y)}\)
\(=\frac{x(x+2y)+4-3x(x+y)}{(x+y)(x+2y)}\)
\(=\frac{-2x^2-xy-4}{(x+y)(x+2y)}\)