a: \(=\dfrac{x^2-1-3x^2+3+2x^2+7}{2x-y}=\dfrac{9}{2x-y}\)
b: \(=\dfrac{x+y+x-y+2x-3y}{1-xy}=\dfrac{4x-3y}{1-xy}\)
a: \(=\dfrac{x^2-1-3x^2+3+2x^2+7}{2x-y}=\dfrac{9}{2x-y}\)
b: \(=\dfrac{x+y+x-y+2x-3y}{1-xy}=\dfrac{4x-3y}{1-xy}\)
thực hiện phép tính:
a,\(\dfrac{2x+4}{10}+\dfrac{2-x}{15}\)
b,\(\dfrac{3x}{10}+\dfrac{2x-1}{15}+\dfrac{2-x}{20}\)
c,\(\dfrac{x+1}{2x-2}+\dfrac{x^2+3}{2-2x^2}\)
d,\(\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\)
e,\(x+y+\dfrac{x^2+y^2}{x+y}\)
Cộng các phân tử:
a)\(\dfrac{2x-3}{x}+\dfrac{1-x}{x+2}+\dfrac{4x}{x-1}\)
b)\(\dfrac{1}{1+x}+\dfrac{1}{x-1}+\dfrac{3x}{1-x^2}\)
c)\(\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{1}{x-1}\)
d)\(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
thực hiện các phép tính
a. \(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\)
b.\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\)
c.\(\dfrac{1}{xy-x^2}-\dfrac{1}{y^2-xy}\)
Rút gọn biểu thức:
\(a,\left(\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\right):\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(b,\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y-x}\right):\dfrac{2y}{x-y}\)
1. Tìm GTNN của \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}-\dfrac{x^2-2}{x^2-x}\right)\) khi x>1
2. Cho biểu thức: \(B=\dfrac{2}{x}-\left(\dfrac{x^2}{x^2-xy}+\dfrac{x^2-y^2}{xy}-\dfrac{y^2}{y^2-xy}\right):\dfrac{x^2-xy+y^2}{x-y}\)
a. Rút gọn B
b. Tìm giá trị của B với |2x-1|=1 và |y+1|=1/2
Thực hiện phép tính:
a, \(\dfrac{x^2}{x+1}-\dfrac{2x}{x^2-1}-\dfrac{1}{1-x}+1\)
\(b,\dfrac{2x+y}{2x-y}+\dfrac{8xy}{y^2-4x^2}+\dfrac{2x-y}{2x+y}\)
Thực hiện phép tính:
a, \(\dfrac{y}{xy-5x^2}-\dfrac{15y-25x}{y^2-25x^2}\)
\(b,\dfrac{2x}{x^2+2xy}-\dfrac{y}{2y^2-xy}+\dfrac{4y}{x^2-4y^2}\)
Rút gọn biểu thức:
\(\left(\dfrac{y}{xy-2x^2}-\dfrac{2}{y^2+y-2xy-2x}\right)\left(1+\dfrac{3y+y^2}{3+y}\right)\)
Bài 1: Cho \(\text{A}=\dfrac{3}{2x+2}+\dfrac{5x}{x^2-1}-\dfrac{5}{2x-2}\)
a. Rút gọn
b. Tìm x để \(\dfrac{P}{2}=\dfrac{3}{x^2+2}\)
Bài 2: Chứng minh rằng (\(\left(\dfrac{x^3-y^3}{x-y}+xy\right).\left(\dfrac{x-y}{x^2-y^2}\right)^2=1\)