Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Viet Pham thi

Thu gọn rồi tìm no: \(h\left(x\right)=x.\left(x-1\right)+1\)

Cho biết \(\left(x-1\right).f\left(x\right)=\left(x+4\right).f\left(x+8\right)\)với mọi \(x\). C/m rằng \(f\left(x\right)\)có ít nhất 2 no

Xuân Tuấn Trịnh
15 tháng 5 2017 lúc 20:50

1.

h(x)=x(x-1)+1=x2-x+1

Cho h(x)=0=>x2-x+1=0<=>\(\left(x^2-\dfrac{1}{2}x\right)-\left(\dfrac{1}{2}x-\dfrac{1}{4}\right)+\dfrac{3}{4}=0\)

<=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>PTVN

2.

(x-1).f(x)=(x+4).f(x+8)

*)Với x=1 ta có:

0.f(1)=5.f(9)

<=>5.f(9)=0

=>x=9 là 1 nghiệm của f(x)

*)với x=-4 ta có:

-5.f(-4)=0.f(4)

=>-5.f(-4)=0

=>x=-4 là 1 nghiệm của f(x)

Vậy f(x) có ít nhất 2 nghiệm là x=-4 và x=9


Các câu hỏi tương tự
Hồ Lê Hằng Nga
Xem chi tiết
Nozomi Judo
Xem chi tiết
Nguyễn Thị Huyền Trang
Xem chi tiết
Phạm Vũ Ngọc Duy
Xem chi tiết
Phạm Vũ Ngọc Duy
Xem chi tiết
Cô gái bí ẩn
Xem chi tiết
Đỗ thị như quỳnh
Xem chi tiết
Something Just Like This
Xem chi tiết
Linh Lê
Xem chi tiết