a) 6xy.2x3yz2=(6.2).(x.x3).(y.y).z2=12x4.y2.z2
=> Hệ số: 12; Phần biến: x4y2z2; Bậc đơn thức: 8
b) 12x3y2.(-3/4 xy2)= [12.(-3/4)]. (x3.x).(y2.y2)= -9.x4.y4
=> Hệ số: -9; Phần biến: x4.y4; Bậc đơn thức: 8
c)
\(\dfrac{1}{5}x^3y.\left(-5x^4yz^3\right)=\left[\dfrac{1}{5}.\left(-5\right)\right].\left(x^3.x^4\right).\left(y.y\right).z^3\\ =-x^7y^2z^3\)
=> Hệ số: -1; Phần biến: x7y2z3; Bậc đơn thức: 12
d) \(-\dfrac{3}{8}x^3y^2z.\left(4x^2yz\right)^3=\left[-\dfrac{3}{8}.4^2\right].\left(x^3.x^{2.3}\right).\left(y^2.y\right).\left(z.z^3\right)=-6.x^9y^3z^4\)
=> Hệ số: -6; Phần biến: x9y3z4; Bậc đơn thức: 16
a) Ta có: \(6xy\cdot2x^3yz^2\)
\(=\left(6\cdot2\right)\cdot\left(x\cdot x^3\right)\cdot\left(y\cdot y\right)\cdot z^2\)
\(=12x^4y^2z^2\)
Hệ số là 12
Phần biến là \(x^4;y^2;z^2\)
Bậc là 8
b) Ta có: \(12x^3y^2\cdot\left(-\dfrac{3}{4}xy^2\right)\)
\(=\left[12\cdot\left(-\dfrac{3}{4}\right)\right]\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\)
\(=-9x^4y^4\)
Hệ số là 9
Phần biến là \(x^4;y^4\)
Bậc là 8