a)
\(A = 13{{\rm{x}}^2}y + 4 + 8{\rm{x}}y - 6{{\rm{x}}^2}y - 9 = \left( {13{{\rm{x}}^2}y - 6{{\rm{x}}^2}y} \right) + 8{\rm{x}}y + (4 - 9) = 7{{\rm{x}}^2}y + 8{\rm{x}}y -5\)
b)
\(\begin{array}{l}B = 4,4{{\rm{x}}^2}y - 40,6{\rm{x}}{y^2} + 3,6{\rm{x}}{y^2} - 1,4{{\rm{x}}^2}y - 26\\B = \left( {4,4{{\rm{x}}^2}y - 1,4{{\rm{x}}^2}y} \right) + \left( { - 40,6{\rm{x}}{y^2} + 3,6{\rm{x}}{y^2}} \right) - 26\\B = 3{{\rm{x}}^2}y - 37{\rm{x}}{y^2} - 26\end{array}\)