Đường tròn ngoại tiếp tam giác là đường tròn đi qua ba đỉnh của tam giác. Tâm đường tròn ngoại tiếp tam giác là giao điểm của các đường trung trực của các cạnh tam giác.
Đường tròn ngoại tiếp tam giác là đường tròn đi qua ba đỉnh của tam giác. Tâm đường tròn ngoại tiếp tam giác là giao điểm của các đường trung trực của các cạnh tam giác.
Thế nào là đường tròn nội tiếp một tam giác ? Nêu cách xác định tâm của đường tròn nội tiếp tam giác ?
ho tam giác MNP có MN=MP nội tiếp đường tròn tâm O, các đường cao MA, NB, PC cắt nhau tại H.
a, cm tứ giác MPHC là tứ giác nội tiếp. xác định tâm I của đường tròn ngoại tiếp tức giác đó
b, cm MC. MP= MH.MA
C, cm AB là tiếp tuyến đường tròn tâm I
cho tam giác MNP có MN=MP nội tiếp đường tròn tâm O, các đường cao MA, NP, PC cắt nhau tại H. a, cm tứ giác MPHC là tứ giác nội tiếp. xác định tâm I của đường tròn ngoại tiếp tức giác đó
b, cm MC. MP= MH.MA
C, cm AB là tiếp tuyến đường tròn tâm I
Đi vào chỗ trống để được định lí đúng:Tam giác ……(1)…… đường tròn có một cạnh là ……(2)…… thì tam giác đó là tam giác ……(3)……
A. (1) nội tiếp, (2) bán kính, (3) cân
B. (1) nội tiếp, (2) đường kính, (3) vuông
C. (1) ngoại tiếp, (2) bán kính, (3) vuông
D. (1) ngoại tiếp, (2) đường kính, (3) đều
vẽ đường tròn ngoại tiếp tam giác nhọn ABC và vẽ đường kính AD. AH là đường cao của tam giác. Chứng minh tam giác AHB đồng dạng với tam giác ACB
Cho tam giác MAB vuông tại M ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
: Cho tam giác ABC nhọn nội tiếp đường tròn tâm (O; R), hai đường cao AD, BE của tam giác ABC
cắt nhau tại H.
a) Chứng minh: CH AB.
b) Chứng minh: Bốn điểm A, E, D, B cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
c) Chứng minh: OI2 + DI2 = R2.
Bài 4: Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE. Chứng minh:
Giải giúp mình câu c và d nhé!
a/ tứ giác CEHD nội tiếp . b/Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
c/ tam giác cân EBD cân. d/ DE là tiếp tuyến của đường tròn (O).
Cho tam giác ABC cân tại A biết ab bằng ac bằng 5 cm BC = 6 cm Hỏi đường cao AD và Be của tam giác ABC cắt nhau tại H D thuộc BC E thuộc AC
a Tính độ dài đoạn thẳng ad
B tính số đo góc C và góc ABC
C Gọi O là tâm đường tròn ngoại tiếp tam giác AC Chứng tỏ de là tiếp tuyến của đường tròn tâm O