Đường tròn nội tiếp tam giác là đường tròn tiếp xúc với ba cạnh của tam giác. Tâm đường tròn nội tiếp tam giác là giao điểm của các tia phân giác của các góc trong của tam giác.
Đường tròn nội tiếp tam giác là đường tròn tiếp xúc với ba cạnh của tam giác. Tâm đường tròn nội tiếp tam giác là giao điểm của các tia phân giác của các góc trong của tam giác.
Thế nào là đường tròn ngoại tiếp một tam giác ? Nêu cách xác định tâm của đường tròn ngoại tiếp tam giác ?
ho tam giác MNP có MN=MP nội tiếp đường tròn tâm O, các đường cao MA, NB, PC cắt nhau tại H.
a, cm tứ giác MPHC là tứ giác nội tiếp. xác định tâm I của đường tròn ngoại tiếp tức giác đó
b, cm MC. MP= MH.MA
C, cm AB là tiếp tuyến đường tròn tâm I
cho tam giác MNP có MN=MP nội tiếp đường tròn tâm O, các đường cao MA, NP, PC cắt nhau tại H. a, cm tứ giác MPHC là tứ giác nội tiếp. xác định tâm I của đường tròn ngoại tiếp tức giác đó
b, cm MC. MP= MH.MA
C, cm AB là tiếp tuyến đường tròn tâm I
: Cho tam giác ABC nhọn nội tiếp đường tròn tâm (O; R), hai đường cao AD, BE của tam giác ABC
cắt nhau tại H.
a) Chứng minh: CH AB.
b) Chứng minh: Bốn điểm A, E, D, B cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
c) Chứng minh: OI2 + DI2 = R2.
Cho tam giác nhọn ABC nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau tại H (D thuộc AC. E thuộc AB) 1. CM các tứ giác ADHE và BCDE nội tiếp được trong một đường tròn 2. Tia BD và tia CE lần lượt cắt đường tròn O tại M và N. Cm DE song song MN 3. Kẻ đường kính AK. Cm tứ giác BKCM là hình thang cân
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Kẻ 2tiếp tuyến AB, AC với đường tròn (B,C là 2 tiếp điểm). Qua C kẻ một đường thăng songsong với OB, cắt OA tại H. Chứng minh rằng tứ giác ABOC nội tiếp
H là trực tâm của tam giác ABC.
vẽ cả hình
Đi vào chỗ trống để được định lí đúng:Tam giác ……(1)…… đường tròn có một cạnh là ……(2)…… thì tam giác đó là tam giác ……(3)……
A. (1) nội tiếp, (2) bán kính, (3) cân
B. (1) nội tiếp, (2) đường kính, (3) vuông
C. (1) ngoại tiếp, (2) bán kính, (3) vuông
D. (1) ngoại tiếp, (2) đường kính, (3) đều
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O đường kính AM=2R. Gọi H là trực tâm tam giác. CMR: a)BHCM là hình bình hành b)Gọi E là điểm đối xứng của M qua AC. N đối xứng với M qua AB. CMR ba điểm N,H,E thẳng hàng
Cho tam giác MAB vuông tại M ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng