a) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AB, N∈AC)
\(\widehat{AMH}=90^0\)(HM⊥AB)
\(\widehat{ANH}=90^0\)(HN⊥AC)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)(1)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=AH\cdot\dfrac{10}{2}=5\cdot AH\)(2)
Từ (1) và (2) suy ra \(5\cdot AH=24\)
hay AH=4,8cm
Ta có: AMHN là hình chữ nhật(cmt)
nên AH=MN(Hai đường chéo trong hình chữ nhật AMHN)
mà AH=4,8cm(cmt)
nên MN=4,8cm
Vậy: MN=4,8cm