Bài 3: Cho tam giác ABC vuông tại A (AB < AC), trung tuyến AM. E và F lần lượt là chân các đường vuông góc kẻ từ M đến AB và AC a) Chứng minh tứ giác AEMF là hình chữ nhật. b) Cho AB = 4cm, AC = 6cm. Tính diện tích hình chữ nhật AEMF. c) Gọi K là điểm đối xứng với M qua F. Tứ giác AMCK là hình gì? Vì sao?
a: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
b: \(AE=\dfrac{AB}{2}=\dfrac{4}{2}=2\left(cm\right)\)
AF=AC/2=3cm
Do đó: \(S_{AEMF}=2\cdot3=6\left(cm^2\right)\)
c: Xét ΔCAB có
M là trung điểm của BC
MF//AB
Do đó F là trung điểm của AC
Xét tứ giác AMCK có
F là trung điểm chung của AC và MK
nên AMCK là hình bình hành
mà MA=MC
nên AMCK là hình thoi