a: Xét ΔHMN và ΔHAB có
\(\dfrac{HM}{HA}=\dfrac{HN}{HB}\)
\(\widehat{MHN}\) chung
Do đó: ΔHMN đồng dạng với ΔHAB
b:
Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{HBA}\right)\)
Do đó: ΔHAB đồng dạng với ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
\(HM\cdot HA=\dfrac{1}{2}\cdot HA\cdot HA=\dfrac{1}{2}HA^2\)
\(HN\cdot HC=\dfrac{1}{2}\cdot HB\cdot HC=\dfrac{1}{2}\cdot HA^2\)
Do đó: \(HM\cdot HA=HN\cdot HC\)
c: \(HM\cdot HA=HN\cdot HC\)
=>\(\dfrac{HN}{HM}=\dfrac{HA}{HC}\)
Xét ΔHAN vuông tại H và ΔHCM vuông tại H có
\(\dfrac{HA}{HC}=\dfrac{HN}{HM}\)
Do đó: ΔHAN đồng dạng với ΔHCM