a) Xét ΔBAC vuông tại A và ΔAHC vuông tại H có
\(\widehat{ACH}\) chung
Do đó: ΔBAC\(\sim\)ΔAHC(g-g)
\(\Leftrightarrow\dfrac{AB}{HA}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB\cdot HC=AC\cdot AH\)(đpcm)
a) Xét ΔBAC vuông tại A và ΔAHC vuông tại H có
\(\widehat{ACH}\) chung
Do đó: ΔBAC\(\sim\)ΔAHC(g-g)
\(\Leftrightarrow\dfrac{AB}{HA}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB\cdot HC=AC\cdot AH\)(đpcm)
Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH.
a/ Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB2 = BH.BC
b/ Vẽ tia phân giác của góc ABC cắt AH tại I, cắt AC tại E. Chứng minh IH/IA = BI/BE
c/ Từ E kẻ đường thẳng song song với AH cắt tia BA tại P. Gọi M là giao điểm của PE và CB. Chứng minh PC2 = AH.PM + CE.CA
cho tam giác ABC vuông tại A có AB=9cm,AC=12cm,đường cao AH a/ chứng minh tam giác ABC đồng dạng với tam giác HBA . Tính BC,AH. b/ kẻ HM vuông góc với AB tại M. chứng minh: HM^2=MA*MB c/ MC cắt AH tại I , đường thẳng qua I và song song với AC cắt AB,BC lần lượt tại E,F . CM: IF=IE
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm.Từ B kẻ đường thẳng // với AC;phân giác góc BAC cắt BC tại M và cắt đường thẳng AB tại N a ) Chứng mình tam giác BMN đồng dạng với tam giác CMA b ) chứng minh AB/AC=MN/AN C) từ N kẻ NE vuông góc với AC (E thuộc AC) NE cắt BC tại I tính BI
Cho ∆ABC vuông tại A, đường cao AH. Đường phân giác của góc ABC cắt AC tại D và cắt AH tại E.
a)Chứng minh: tam giác ABC đồng dạng tam giác HBA và AB2 = BC.BH
b)Biết AB = 9cm, BC = 15cm. Tính DC và AD
c)Gọi I là trung điểm của ED. Chứng minh: góc BIH = góc ACB.
Cho ∆ABC vuông tại A ( AB < AC) có đường cao AH.a/ Chứng minh: ∆HAC ∆ABC. Từ đó suy ra AH.AC = HC.ABb/ Vẽ tia phân giác góc ABC cắt AH, AC lần lượt tại E và D. Chứng minh : 𝐸H/ 𝐸A = DA /𝐷Cc/ Qua A vẽ đường thẳng vuông góc với BD tại I. Chứng minh : ∆BHI đồng dạng ∆BDC
Bài 4: Cho Tam giác ABC nhọn (AB < AC). Kẻ đường cao AH. Từ H kẻ HM vuông góc AC tại M, HN vuông góc AB tại N
a/ CM: ∆ANH ᔕ ∆AHB
b/ CM: AM . AC = AN . AB
c/ Tia MN cắt CB tại I. CM: IB . IC = IN . IM
CÓ AI GIÚP MÌNH CÂU NÀY VỚI Ạ
Cho tam giác ABC vuông tại A (AB<AC), đường trung tuyến Am. Qua M kẻ đường thẳng vuông góc với AM cắt AB tại E và cắt AC tại F. Kẻ AH vuông góc với BC (H thuộc BC), AH cắt FE tại I. Chứng minh rằng :
a.Góc BAM = góc ABM.
b. Góc ACB = góc AEF từ đó suy ra tam giác MBE đồng dạng với tam giác MFC.
c.AB.AE = AC.AF
d.S ABC/ S AFE =(AM/AI)^2
GIúp mình với nay mình thi rồi
Bài 2: Cho tam giác ABC vuông tại A có AB=12cm AC=16cm ve đường cao AH A) CM tam giác ABC đồng dạng tam giác HBA B) tính Bc, AH, BH C) Trên AH lấy điểm K sao cho AK=3,6cm. Từ K đường thẳng // BC cắt Ab và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC
cho tam giác ABC vuông tại A, có AB=5cm, AC=12cm,đường cao AH(H thuộc BC). Tia phân giác của góc ABC cắt AH tại E và cắt AC tại F.
a) Tính độ dài BC,AF,FC
b)Chứng minh tam giác ABF đồng dạng với tam giác HBE
c) C/m tam giác AEF cân
d) C/m AB.FC=BC.AE