* Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy điểm M,N sao cho góc AMC= góc ANB= \(90^0\). Chứng minh:AM=AN
* Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{20}{21}\)và AH=420. Tính chu vi tam giác ABC
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
Cho tam giác ABC vuông tại A (Ab > AC), đường cao AH(H thuộc BC), Trên tia đối của tia CB lấy điểm M sao cho HM=HA. Qua điểm M kẻ đường thẳng vuông góc với MB cắt đường thẳng AB tại N. Gọi P là trung điêmr của CN. Tia AP cắt đường thẳng BC tại Q. Chứng minh: a) Tam giác NCB đồng dạng tam giác MAB
1. Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: DE^3=BD.CE.BC
2. Cho tam giác ABC vuông tại A (AB<AC) đường cao AH. Lấy điểm M trên đoạn thẳng HC sao choHM=AH. Qua M vẽ một đường thẳng vuông góc với BC, cắt AC tại D. Chứng minh rằng: 1/AH^2 = 1/AD^2 + 1/AC^2.
Cho tam giác ABC vuông tại A, AH là đường cao.
a) BH = 3,6cm, CH = 6,4cm. Tính AH, AC, AB, góc HAC
b) Qua B kẻ Bx // AC. Bx cắt AH tại K. Chứng minh AH.AK = BH.BC
c) Kẻ KE vuông góc AC. Chứng minh \(HE=\dfrac{3}{5}KC\) (sử dụng số đo ở câu a)
d) Gọi I là giao điểm của các đường phân giác trong tam giác ABC. Gọi r là khoảng cách từ I đến BC. Chứng minh \(\dfrac{r}{AH}\ge\dfrac{1}{3}\)
Giúp em câu c và d ạ. Em cảm ơn mọi người.
Bài 6:Cho tam giác ABC vuông tại A, có đường cao AH. Cho AB = 6cm, AC = 8cm.
a) Tính AH, HB.
b) Vẽ HM vuông AB tại M, HN ^ AC tại N. Chứng minh AM.AB = AN.AC.
c) Gọi K là trungđiểm BC. Chứng minh AK vuông MN.
d) Tính \(\dfrac{S_{ANM}}{S_{ABC}}\)
Cho tam giác ABC vuông tại A , AH là đường cao , góc ABC =60° . GỌI M LÀ TRUNG ĐIỂM CỦA AB , N LÀ TRUNG ĐIỂM CỦA AC . Lấy D đối xứng với H qua M và E đối xứng với H qua N. a, Chứng minh AH^2=AD. AE b, tia phân giác của góc ABC cắt AC tại K. Cm: sin góc ABC= 2sin góc ABK × cos CBK
Tam giác ABC vuông ở A; AB=AC; M thuốc AC sao cho MC:MA=1:3. Kẻ đường vuông góc AC tại C cắt BM ở K; kẻ BE vuông góc với đường CK ở E
a. ABEC là hình gì?
b. CM: \(\dfrac{1}{AB^2}=\dfrac{1}{BM^2}+\dfrac{1}{BK^2}\)
Cho Tam giác ABC vuông tại A có AB=9 cm, BC=15, đường cao AH
a) Tính AH, CH
b) qua B vẽ đường thẳng vuông góc với BC cắt AC tại D. Tia phân giác của C cắt AB tại N và BD tại M. Chứng minh CN.CD=CM.CB
c) Chứng minh NA.CD=MD.CA