Cho ΔABC đều nội tiếp \(\left(O;R\right)\)
Gọi M là điểm bất kỳ thuộc cung BC
a. Cm MA = MB \(+\) MC
b. Gọi D là giao điểm của MA và MB
Cm \(\dfrac{MD}{MB}+\dfrac{MD}{MC}=1\)
c. Kẻ AH ⊥ BC , AH cắt \(\left(O;R\right)\) tại K
Cm AM.AD = AH.AK
d. Tính tổng \(MA^2+MB^2+MC^2\) theo R
Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC. Trên MA lấy điểm D sao cho MD = MB.
a) Hỏi tam giác MBD là tam giác gì ?
b) So sánh tam giác BDA và BMC
c) Chứng minh rằng MA = MB + MC
Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm nằm trên cung nhỏ BC. Chứng minh rằng MA = MB + MC.
Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC.Trên MA lấy điểm D sao cho MD = MB
a. Hỏi tam giác MBD là tam giác gì?
b. So sánh hai tam giác BDA và BMC
c. Chứng minh rằng MA =MB + MC
d. CMR \(\frac{1}{MN}=\frac{1}{MB}+\frac{1}{MC}\)( N là giao điểm của AM và BC )
cho tam giác ABC nội tiếp (O) . Gọi M là một điểm trên cung BC. Trên tia đối của MA lấy D sao cho MD = MB . Tia CO cắt (O) ở N. Chứng minh
a, BD//MN
b CM cắt BD ở I chứng minh I là trung điểm BD
c, khi M chuyển trên cung BC thì điểm D chuyển động trên 1 cung tròn cố định
Bài 2: Cho tam giác ABC nhọn AB<AC, vẽ (O) đường kính BC, đường tròn này cắt AB, AC lần lượt tại M và N, BN và CM cắt nhau tại H, AH cắt BC tại K
a) Chứng minh: AK vuông góc với BC
b) Chứng minh các tứ giác BMHK, AMKC, AMHN và ABKN nội tiếp
c) Chứng minh H là tâm đường tròn nội tiếp tam giác MNK
d) Chứng minh tứ giác MNOK nội tiếp
Bài 3: Cho điểm M nằm ngoài (O), vẽ hai tiếp tuyến MA, MB và cát tuyến MCD với (O), O nằm ngoài góc DMA, Gọi I là trung điểm của dây CD.
a) Chứng minh năm điểm M,A,I, O, B cùng thuộc một đường tròn
b) Chứng minh MA.MB = MC. MD
c) Gọi H là giao điểm của OM với (O). Chứng minh tứ giác CHOD nội tiếp
d) Gọi K là giao điểm của AB và OI. Chứng minh KC và KD là hai tiếp tuyến của (O).
Cho ∆nhọn ABC nội tiếp đường tròn(O) gọi M là giao điểm bất kì trên cung nhỏ BC của đường tròn (O) CM không trùng với BC kẻ MH vuông góc với đường thẳng AB tại H MK vuông góc với đường thẳng AC tại K a.chứng minh tứ giác AHMK nội tiếp b.chứng minh MH.MC=MK.MB
VÌ EM KHÔNG HIỂU RÕ LẮM NÊN NẾU MỌI NGƯỜI CÓ GIẢI ĐƯỢC THÌ CHỨNG MINH RÕ RÀNG GIÚP EM ĐƯỢC KHÔNG Ạ
Bài 1:
Cho 1/2 đường tròn (O) đường kính AB và điểm M trên nửa đường tròn, H là hình chiếu của M trên AB.Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O) vẽ hai nửa đường tròn (O1), (O2) có đường kính AH, BH cắt MA, MB lần lượt ở P, Q.
a) Chứng minh MH=PQ
b) Xác định vị trí tương đối của PQ với 2 đường tròn (O1), (O2)
c) Xác định vị trí của M trên nửa đường tròn (O) để MPHQ là hình vuông
Bài 2: Cho tam giác nhọn ABC nội tiếp đường tròn (O); trực tâm H tia AO cắt đường tròn ở D
a) Tứ giác BHCD là hình gì?
b) Gọi I là trung điểm của BC, chứng minh OI= 1/2 AH
Bài 3: Cho tam giác đều ABC nội tiếp (O), M là một điểm trên cung nhỏ BC. Trên tia MA lấy điểm D sao cho MD=MB
a) Tam giác BMD là tam giác gì?
b) So sánh hai tam giác ADB và CMB
c) Chứng minh MA=MB+MC (MA> CA)
cho tam giác ABC vuông tại A trên cạnh Ac Lấy 1 đường tròn tâm o đường kính MC Cắt BC tại điểm thứ 2 là E ,Đường thằng CM cắt đường tròn tâm O Tại Điểm Thứ 2 Là D
a)CM ABEM nội tiếp
b)CM ME.CB=MB.CD