cho tam giác ABC có 3 góc nhọn nội tiếp đtròn tâm O. Vẽ các đường cao BE, CF cắt nhau tại H. Kẻ đường kính BK của (O). chứng minh rằng:
a. BCEF là tứ giác nội tiếp.
b. AHCK là hình bình hành.
c. Đường tròn đường kính AC cắt BE ở M. Đường tròn đường kính AB cắt CF ở N. Chứng minh AM = AN
Cho tam giác ABC có 3 góc nhọn , ABC=75 độ , (ab<ac, ac cố định ) nội tiếp đường tròn tâm o . các đường cao AF và CE của tam giác abc cắt nhau tại h ( f thuộc bc , e thuộc ab )
a cm tứ giác BEHF nội tiếp
b kẻ đường kính ak của đường tròn o .chứng minh ; hai tam giác abk và afc đồng dạng
c khi b di chuyển trên cung lớn ac thì điểm H di chuyển trên đường nào
giúp mình câu c ạ !!!
Cho tam giác ABC có đường tròn nội tiếp ( I ) tiếp xúc với BC tại D. Gọi H, K là trực tâm tam giác AIB và AIC. Chứng minh rằng HK đi qua điểm D.
cho tam giac ABC có 3 góc nhọn nội tiếp đường tròn (O) . vẽ các đường cao BD và CE
a)cm BDEC nội tiếp. Xác định tâm I của đường tròn
b)gọi K là trung điểm ED. cm IK // OA
Cho tam giác nhọn nội tiếp đường tròn tâm . Trên cung nhỏ lấy điểm sao cho không là đường kính ( không trùng ). Gọi lần lượt là hình chiếu của điểm trên các đường thẳng . Chứng minh ba điểm thẳng hàng.
Cho tam giác ABC vuông tại A, đường cao AH, I, K, L là tâm nội tiếp tam giác ABC, ABH, ACH.
a) Chứng minh I là trực tâm tam giác AKL
b) KL cắt AB, AC tại M, N. Chứng minh A là tâm (MHN)
c) Chứng minh AI =KL .
Mỗi câu sau đây đúng hay sai ?
a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy
d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn nội tiếp tam giác ấy
e) Giao điểm ba đường phân giác của một tam giác là tâm đường tròn nội tiếp tam giác ấy
f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy
g) Tứ giác có tổng độ dài các cặp cạnh đối bằng nhau thì ngoại tiếp được đường tròn
h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn
i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó
trên đường tròn O lấy ba điểm A,B,C sao cho tam giác ABC nhọn. gọi AD,BE,CF là các đường cao của tam giác ABC; Đường thẳng EF cắt BC tại P.Qua D kẻ đường thẳng song song với đường thẳng EF cắt đường thẳng AC và AB lần lượt tại Q và R, M là trung điểm của BC.
a, CM tứ giác BQCR là tứ giác nội tiếp
b, CM hai tam giác EPM và DEM đồng dạng
Cho tam giác ABC vuông tại A (AB < AC) nội tiếp đường tròn (O). Kẻ đường cao AH (H thuộc BC), gọi M là điểm chính giữa cung AC. Tia BM cắt AC tại E cắt tiếp tuyến tại C của (O) tại F. OM cắt AC tai K. 1) Chứng minh tứ giác AHOK nội tiếp. 2) Chứng minh tam giác CEF cân 3) Chứng minh OM tiếp xúc với đường tròn ngoại tiếp tam giác AOB