Với `(AB)/(BC) = 3/5`
`=> (AB)/3 = (BC)/5`
Đặt `(AB)/3 = (BC)/5 = k (k > 0)`
`=> AB = 3k; BC = 5k`
Áp dụng định lý pitago vào tam giác `ABC` vuông tại `A`
`=> AB^2 + AC^2 = BC^2`
`=> (3k)^2 + 16^2 = (5k)^2`
`=> 9k^2 + 256 = 25k^2`
`=> 16k^2 = 256`
`=> k^2 = 16`
`=> k^2 = 4^2`
`=> k = 4 (`Vì `k > 0)`
Khi đó: `AB = 3k = 4 . 3 = 12 (cm)`
`BC = 5k = 5 . 4 = 20 (cm)`
b) Tam giác `ABC` có BD là tia phân giác của tam giác `ABC`. Áp dụng tính chất đường phân giác trong tam giác
`=> (AD)/(AB) = (DC)/(BC) `
`=> (AD)/12 = (DC)/20`
Áp dụng tính chất dãy tỉ số bằng nhau
`=> (AD)/12 = (DC)/20 = (AD + DC)/(12 + 20) = 16/32 = 1/2`
`=> AD = 1/2 xx 12 = 6 (cm) ; DC = 1/2 xx 20 = 10 (cm)`
a: AB/BC=3/5
=>AB/3=BC/5=k
=>AB=3k; BC=5k
BC^2=AB^2+AC^2
=>16k^2=16^2=256
=>k^2=16
=>k=4
=>AB=12cm; CB=20cm
b: BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=16/8=2
=>AD=6cm; CD=10cm