Cho tam giác ABC. Trên tia đối của các tia AB, AC lần lượt lấy các điểm D và E sao cho AD= AB và AE= AC
a) Chứng minh: tam giác ABC= tam giác ADE
b) Chứng minh DE // BC
c) Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh A là trung điểm của MN
cho tam giác ABC, trên tia đối tia AB lấy điểm M sao cho AB=AM. Trên tia AC lấy điểm N sao cho AC=AN. Chứng minh:
a) tam giác ABC=tam giác AMN
b) chứng minh BC//MN
c) gọi P và Q lần lượt là trung điểm của BC và MN. Chứng minh A là trung điểm của PQ
Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA. a) Chứng minh rằng: tam giác AMB = tam giác KMC b) Trên cạnh AB, CK lần lượt lấy điểm E, F sao cho BE = CF. Chứng minh rằng: Ba điểm E, M, F thẳng hàng.( giúp mình với T^T)
cho tam giác ABC cân tại A, Kẻ BE vuông góc với AC tại E và CF vuông góc với AB tại F . Chứng minh tam giác BFC= tam giác CEB . Gọi D là trung điểm của BC. Chứng minh tam giác BFD = tam giác CED và suy ra tam giác DEF cân. Cho biết AC=10(cm);BE=8(cm). Tính độ dài AE và EC. Cho góc A=40 độ . Tính góc AFE
Bài 5: Cho tam giác ABC cân tại A. Trên cạnh AC lấy điểm M, trên cạnh AB lấy điểm N sao cho AM = AN.
a) Chứng minh ABM=ACN
b) Gọi I là giao điểm của BM và CN. Chứng minh △ IBC cân.
Cho tam giác ABC cân tại A. trên cạnh AB AC lấy 2 điểm E,F sao chi AE=AF gọi O là giao điểm của BE và CF CM: a,BF=CE b,tam giác DBC cân c,AO là đường trung tuyến của EF