a) từ đồ thị hàm số y = \(\cos x\) , hãy suy ra đồ thị các hàm số sau và vẽ đô thị các hàm số đó : y = \(\cos x+2\) ; y = \(\cos\left(x-\frac{\pi}{4}\right)\).
b) hỏi mỗi hàm số đó có phải là hàm số tuần hoàn không ?
a) từ đồ thị hàm số y = \(\cos x\) , hãy suy ra đồ thị các hàm số sau và vẽ đô thị các hàm số đó : y = \(\cos x+2\) ; y = \(\cos\left(x-\frac{\pi}{4}\right)\).
b) hỏi mỗi hàm số đó có phải là hàm số tuần hoàn không ?
a) từ đồ thị hàm số y = \(\cos x\) , hãy suy ra đồ thị các hàm số sau và vẽ đô thị các hàm số đó : y = \(\cos x+2\) ; y = \(\cos\left(x-\frac{\pi}{4}\right)\).
b) hỏi mỗi hàm số đó có phải là hàm số tuần hoàn không ?
a) từ đồ thị hàm số y = \(\cos x\) , hãy suy ra đồ thị các hàm số sau và vẽ đô thị các hàm số đó : y = \(\cos x+2\) ; y = \(\cos\left(x-\frac{\pi}{4}\right)\).
b) hỏi mỗi hàm số đó có phải là hàm số tuần hoàn không ?
Hãy vẽ đồ thị của các hàm số :
a) \(y=1+\sin x\)
b) \(y=\cos x-1\)
c) \(y=\sin\left(x-\dfrac{\pi}{3}\right)\)
d) \(y=\cos\left(x+\dfrac{\pi}{6}\right)\)
Cho hàm số \(y=f\left(x\right)=\left|\sin x-\cos x\right|-\left|\sin x+\cos x\right|\) .Với mọi số nguyên dương n tính \(T=f\left(-\pi\right)+f\left(-\frac{\pi}{2}\right)+...+f\left(-\frac{\pi}{n}\right)+f\left(0\right)+f\left(\frac{\pi}{n}\right)+...+f\left(\frac{\pi}{2}\right)+f\left(\pi\right)\)
GPT
a) \(sin\left(2x+1\right)+cos\left(3x-1\right)=0\)
b) \(sin\left(2x-\frac{\pi}{6}\right)=-sin\left(x-\frac{\pi}{4}\right)\)
c) \(sin\left(3x+\frac{2\pi}{3}\right)+sin\left(x-\frac{7\pi}{5}\right)=0\)
d) \(cos\left(4x+\frac{\pi}{3}\right)+sin\left(x-\frac{\pi}{4}\right)=0\)
xét hàm số y = f(x) = \(\cos\frac{x}{2}\).
a) chứng minh rằng với mỗi số nguyên k , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = \(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).
c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .
d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh rằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y = \(\cos\frac{x}{2}\) .
xét hàm số y = f(x) = \(\cos\frac{x}{2}\).
a) chứng minh rằng với mỗi số nguyên kk , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .
b) lập bảng biến thiên của hàm số y =\(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).
c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .
d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh rằng F biến đồ thị hàm số y =\(\cos x\) thành đồ thị hàm số y =\(\cos\frac{x}{2}\) .