Bài 8: Tính chất ba đường trung trực của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Sử dụng bài 55 để chứng minh rằng : Điểm cách đều ba đỉnh của một tam giác vuông là trung điểm của cạnh huyền của tam giác đó 

Từ đó hãy tính độ dài đường trung tuyến xuất phát từ đỉnh góc vuông theo độ dài cạnh huyền của một tam giác vuông ?

Thien Tu Borum
19 tháng 4 2017 lúc 16:03

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB = 1212 BC

mà AM = MB nên MA =1212 BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.

Nguyễn Thị Thảo
19 tháng 4 2017 lúc 20:48

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB = 1212 BC

mà AM = MB nên MA =1212 BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền




Các câu hỏi tương tự
Quỳnh Chi
Xem chi tiết
neji
Xem chi tiết
Đan Chi Nguyễn
Xem chi tiết
Cátt Tườngg
Xem chi tiết
Trọng Trường
Xem chi tiết
đức khang trần
Xem chi tiết
Nguyễn Lê Hà An
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Thu Hương Hoàng
Xem chi tiết