Giải pt, bất pt
a) \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}=2x\right)\)
b) \(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
c) \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)
Xét dấu các biểu thức sau :
a/ 2x2 -7x + 5
b/ -x2 + 4x + 5
c/ -4x2 + 12x - 9
d/ 3x2 - 2x - 8
e/ -x2 + 2x - 1
f/ 2x2 -7x + 5
g/ ( 3x2 - 10x + 3 )( 4x - 5 )
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
giải bpt:
1. \(\frac{\sqrt{-3x^2+x+4}+2}{x}< 2\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
3. \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x=18}\)
4. 4(x+1)2 \(\ge\) (2x +10)( 1- \(\sqrt{3+2x}\))2
5. \(\sqrt{1+x}-\sqrt{1-x}\ge x\)
giải các BPT :
1. \(\sqrt{x^2-3x+2}+\sqrt{x^2-3x+16}>3\)
2.\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}\le2x+2\)
3.\(\sqrt{2x-1}+\sqrt{3x-2}< \sqrt{4x-3}+\sqrt{5x-4}\)
giải bất phương trình
a. -x^2+6x-9>0
b. -12x^2+3x-1<0
c.(2x-8)(x^2-4x+3)>0
1) Giải bất phương trình sau:
a) |1-3x|≤7
b) \(\sqrt{3x^2-2x-5}\)≤x+1
2) Bằng cách lập bảng xét dấu, giải bất phương trình:
\(\frac{\left(2x-1\right)\left(3-x\right)}{x^2-5x+4}\)>0
3) Giải phương trình
x+4-\(\sqrt{14x-1}\)=\(\frac{\sqrt{10x-9}-1}{x}\)
1. Thực hiện các phép tính:
a) (-7x^2)(3x^2-x-2)
b) (2x^3-3x^2-10x+3):(x-3)
2. Rút gọn các biểu thức:
a) (x-3)(x^2+1)-(x-3)(x^2+3x+9)
b) (2x+1)^2+(2x-1)^2+2(4x^2-1)
3. Phân tích các đa thức sao thành nhân tử
a) x^3-x^2-x+1
b)3x^2-7x-10
4.
a)Tìm a để x^3-3x^2+5x+1 chia hết cho (x-2)
b) Chứng tỏ rằng 4x^2-12xy+10y^2 ≥0 với mọi x và y
Gỉai bất phương trình
\(4\sqrt{x^2-4x+1}-\sqrt{x^4+2x^3+x^2-96x}\le x^2-3x-4\)