\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)\)
Rút gọn:
\(A=\dfrac{\sqrt[3]{x^4}+\sqrt[3]{x^2y^2}+\sqrt[3]{y^4}}{\sqrt[3]{x^2}+\sqrt[3]{xy}+\sqrt[3]{y^2}}\)
\(B=\dfrac{\sqrt[3]{xy}\left(\sqrt[3]{y^2}-\sqrt[3]{x^2}\right)+\left(\sqrt[3]{x^4}-\sqrt[3]{y^4}\right)}{\sqrt[3]{x^4}+\sqrt[3]{x^2y^2}-\sqrt[3]{x^3y}}.\sqrt[3]{x^2}\)
\(C=\left(\dfrac{x\sqrt[3]{x}-2x\sqrt[3]{y}+\sqrt[3]{x^2y^2}}{\sqrt[3]{x^2}-\sqrt[3]{xy}}+\dfrac{\sqrt[3]{x^2y}-\sqrt[3]{xy^2}}{\sqrt[3]{x}-\sqrt[3]{y}}\right).\dfrac{1}{\sqrt[3]{x^2}}\)
Rút gọn biểu thức
\(A=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(B=\dfrac{\sqrt{x}-\sqrt{y}}{x\sqrt{x}-y\sqrt{y}}\)
\(C=\dfrac{3\sqrt{3}+x\sqrt{x}}{3-\sqrt{3x}+x}\)
\(D=\dfrac{x+\sqrt{5x}+5}{x\sqrt{x}-5\sqrt{5}}\)
\(\dfrac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy^2}-\sqrt{x^2y}}{\sqrt{x}-\sqrt{y}}\)
1. Phân tích ra thừa số
a.\(\sqrt{ab}-\sqrt{ac}+\sqrt{bc}+b\)
b.x-y-3(\(\sqrt{x}-\sqrt{y}\))
c. \(\sqrt{x^2-y^2}\)-x+y
2. GPT
a.\(\sqrt{\sqrt{5}-\sqrt{3}x}\)=\(\sqrt{8+2\sqrt{15}}\)
b.\(\sqrt{2+\sqrt{3+\sqrt{x}}}=3\)
Tính GTBT: \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\) biết
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\)
Cho biểu thức \(P=x^3+y^3-3\left(x+y\right)+2021\). Tính giá trị biểu thức P với :
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
và \(y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
Rút gọn:
a,\(\frac{3+\sqrt{3}}{1+\sqrt{3}}\)
b,\(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-\sqrt{2}}\)
c,\(\frac{y-2\sqrt{y}}{\sqrt{y}-2}\)
d,\(\frac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
e,\(\frac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
g,\(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
Rút gọn biểu thức 1) \(\dfrac{\sqrt{14}-\sqrt{21}}{\sqrt{7}}\) .
2) \(\dfrac{\sqrt{a^2+5a+6}}{\sqrt{a+3}}\)
3) \(\sqrt{3\left(x^2-10x+25\right)}.\sqrt{27}\) với x < 5
4)
\(\dfrac{y}{x}\sqrt{\dfrac{x^2}{y^4}}\) với x > 0; y < 0
5) \(\dfrac{1}{x-y}.\sqrt{x^6\left(x-y\right)^4}\) với x \(\ne\) y
CMR: nếu \(a=\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{y^4x^2}}\) thì \(\sqrt[3]{a^2}=\sqrt[3]{x^2}+\sqrt[3]{y^2}\)
Cho biểu thức:
\(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\times\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a, Rút gọn A
b, Biết xy=6 Tìm x, y để A đạt GTNN