Ta có:\(x\ge\sqrt{2}\Rightarrow x^2\ge2\Rightarrow\sqrt{x^2-1}-1\ge0\) (*)
\(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
\(A=\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)
\(A=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)
Kết hợp với (*), ta có:
\(A=\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=2\)
Vậy ...