a) Đk: \(-\dfrac{1}{3}\le x\le2\)
\(\sqrt{3x+1}+\sqrt{2-x}=1\Leftrightarrow\sqrt{-3x^2+5x+2}=-x-1\)
Ta có: \(VT\ge0\) ; \(VP< 0\forall-\dfrac{1}{3}\le x\le2\)
Kl: ptvn
b) \(x^2+5x+9=\left(x+5\right)\left(\left|x\right|+9\right)\) (*)
Th1: x >/ 0
(*) \(\Leftrightarrow x^2+5x+9=\left(x+5\right)\left(x+9\right)\)
\(\Leftrightarrow x^2+5x+9=x^2+14x+45\)
\(\Leftrightarrow9x=36\Leftrightarrow x=4\left(N\right)\)
Th2: x \< 0
(*) \(\Leftrightarrow x^2+5x+9=\left(x+5\right)\left(9-x\right)\)
\(\Leftrightarrow2x^2+x-36=0\Leftrightarrow\left[{}\begin{matrix}x=4\left(L\right)\\x=-\dfrac{9}{2}\left(N\right)\end{matrix}\right.\)
Kl: x=4 , x= - 9/2
c) Đk: \(x\ge-\dfrac{1}{3}\)
\(\sqrt{3x+1}=3x+1\Leftrightarrow\sqrt{3x+1}\left(\sqrt{3x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=0\\\sqrt{3x+1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\left(N\right)\\x=0\left(N\right)\end{matrix}\right.\)
Kl: x= -1/3 , x=0