Đk: -3\<x\<2
Đặt \(\left\{{}\begin{matrix}a=\sqrt{3+x}\\b=\sqrt{2-x}\end{matrix}\right.\left(a,b\ge0\right)\)
Ta có hpt: \(\left\{{}\begin{matrix}a^2+b^2=5\left(1\right)\\a-b=1\left(2\right)\end{matrix}\right.\)
(2) \(a=1+b\) (*)
Thay (*) vào (1), ta được:
\(\left(1+b\right)^2+b^2=5\) \(\Leftrightarrow2b^2+2b-4=0\) \(\Leftrightarrow\left[{}\begin{matrix}b=1\left(N\right)\\b=-2\left(L\right)\end{matrix}\right.\)
Với b=1. ta có: \(\sqrt{2-x}=1\Leftrightarrow x=1\left(N\right)\)
Kl: x=1