b)\(x^3+3x-14=0\left(1\right)\Leftrightarrow x^3-2x^2+2x^2-4x+7x+14=0\)
\(\Leftrightarrow x^2\left(x-2\right)+2x\left(x-2\right)+7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7\right)=0\)
Do \(x^2+2x+7=x^2+2x+1+6=\left(x+1\right)^2+6>0\forall x\)nên \(\left(1\right)\Leftrightarrow\left(x-2\right)\left(x^2+2x+7\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy x là nghiệm của phương trình (1) \(\Leftrightarrow x=2\)