a )
\(3^{400}=\left(3^4\right)^{100}=81^{100}\)
\(9^{200}=\left(9^2\right)^{100}=81^{100}\)
Ta có : \(81^{100}=81^{100}\)
\(\Rightarrow3^{400}=9^{200}\)
b )
\(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}=\left(3^2\right)^{111}=9^{111}\)
Ta cos : \(8^{111}< 9^{111}\)
\(\Rightarrow2^{332}< 3^{223}\).
a) 9200 = 3400 => 3400 < 9200
b) 2332 = 4. 8111
3223 = 3.9111
=> 2332 < 3223
a) Ta có: 9^200 = (3^2)^200 = 3^400
Vì 3^400 = 3^400
=> 3^400 = 9^200
b) Ta có: 2^332 < 2^333 = (2^3)^111 = 8^111
3^223 > 3^222 = (3^2)^111 = 9^111
Vì 8^111 < 9^111 nên 2^332 < 3^223