\(P=\dfrac{2013.2014-1007.4030}{2014^2-2011.2014}\)
\(P=\dfrac{2013.2014-1007.2.2015}{2014^2-2011.2014}\)
\(P=\dfrac{2013.2014-2014.2015}{2014^2-2011.2014}\)
\(P=\dfrac{2014.\left(2013-2015\right)}{2014.\left(2014-2011\right)}\)
\(P=-\dfrac{2}{3}\)
\(Q=-\dfrac{214263}{142862}=-\dfrac{214263:71421}{142862:71421}=-\dfrac{3}{2}\)
Vì \(-\dfrac{2}{3}>-\dfrac{3}{2}\)nên P>Q
\(P=\dfrac{2013.2014-1007.4030}{2014^2-2011.2014}\)
\(P=\dfrac{2013.2014-1007.4030}{2014.2014-2011.2014}\)
\(P=\dfrac{2013.2.1007-1007.4030}{2014\left(2014-2011\right)}\)
\(P=\dfrac{4026.1007-1007.4030}{2014.3}\)
\(=\dfrac{1007.\left(4026-4030\right)}{1007.2.3}\)
\(=\dfrac{1007.-4}{1007.6}=\dfrac{-4}{6}=\dfrac{-2}{3}\)
\(Q=\dfrac{214263}{142842}=-\dfrac{3}{2}\)
\(-\dfrac{3}{2}< -\dfrac{2}{3}\Rightarrow P>Q\)