Ta có :
\(P=\dfrac{6^{2016}+4}{6^{2016}-1}=\dfrac{6^{2016}-1+5}{6^{2016}-1}=\dfrac{6^{2016}-1}{6^{2016}-1}+\dfrac{5}{6^{2016}-1}\)\(=1+\dfrac{5}{6^{2016}-1}\)
\(Q=\dfrac{6^{2016}}{6^{2016}-5}=\dfrac{6^{2016}-5+5}{6^{2016}-5}=\dfrac{6^{2015}-5}{6^{2016}-5}+\dfrac{5}{6^{2016}-5}=1+\dfrac{5}{6^{2016}-5}\)
Vì \(1+\dfrac{5}{6^{2016}-1}< 1+\dfrac{5}{6^{2016}-5}\Rightarrow P< Q\)
Ta có:
\(P-Q=\dfrac{6^{2016}+4}{6^{2016}-1}-\dfrac{6^{2016}}{6^{2016}-5}=1+\dfrac{5}{6^{2016}-1}-1-\dfrac{5}{6^{2016}-5}\)
\(=\dfrac{5}{6^{2016}-1}-\dfrac{5}{6^{2016}-5}=5\left(\dfrac{1}{6^{2016}-1}-\dfrac{1}{6^{2016}-5}\right)< 0\)
Vậy A < B
Ta có \(P=\dfrac{6^{2016}+4}{6^{2016}-1}>\dfrac{6^{2016}+4-4}{6^{2016}-1-4}=\dfrac{6^{2016}}{6^{2016}-5}=Q\)
Vậy P<Q
Có cần công thức chứng minh \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)không vậy.Mình biết.