Ta có :
\(\dfrac{1997^2-1996^2}{1997^2+1996^2}=\dfrac{1.\left(1997+1996\right)}{1997^2+1996^2}=\dfrac{3993}{1997^2+1996^2}\)
Lại có : \(\dfrac{1}{3993}=\dfrac{3993}{3993^2}\)
Do \(3993^2=\left(1997+1996\right)^2>1997^2+1996^2\)
\(\Rightarrow\dfrac{3993}{3993^2}< \dfrac{3993}{1997^2+1996^2}\)
\(\Rightarrow\dfrac{1}{3993}< \dfrac{1997^2-1996^2}{1997^2+1996^2}\)