\(\dfrac{10^{2016}+2}{10^{2016}-1}=\dfrac{10^{2016}-1+3}{10^{2016}-1}=1+\dfrac{3}{10^{2016}-1}>0\)
\(\dfrac{10^{2016}}{10^{2016}}-3=1-3=-2< 0\)
\(\Rightarrow\dfrac{10^{2016}+2}{10^{2016}-1}>\dfrac{10^{2016}}{10^{2016}}-3\)
Hình như bạn viết đề sai:
Sửa đề:
Đặt:
\(A=\dfrac{2^{2016}+2}{2^{2016}-1};B=\dfrac{2^{2016}}{2^{2016}-3}\)
Ta có : Nếu:
\(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a+m}{b+m}>1\left(m\in N\right)\)
Mà:
\(B=\dfrac{2^{2016}}{2^{2016}-3}>1\)
\(\Leftrightarrow\dfrac{2^{2016}}{2^{2016}-3}>\dfrac{2^{2016}+2}{2^{2016}-3+2}>\dfrac{2^{2016}+2}{2^{2016}-1}=A\)
\(\dfrac{10^{2016}+2}{10^{2016}+1}=\dfrac{10^{2016}+1+1}{10^{2016}+1}=1+\dfrac{1}{10^{2016}+1}\)
\(\dfrac{10^{2016}}{10^{2016}-3}=\dfrac{10^{2016}-3+3}{10^{2016}-3}=1+\dfrac{3}{10^{2016}-3}\)
Vì \(\dfrac{1}{10^{2016}+1}< \dfrac{3}{10^{2016}-3}\Rightarrow\dfrac{10^{2016}+2}{10^{2016}+1}< \dfrac{10^{2016}}{10^{2016}-3}\)
Chỗ nào ko hiểu thì hỏi