Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
The God Evil

So sánh A=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)

với B=\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)

Lightning Farron
12 tháng 6 2017 lúc 22:00

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)

\(=\sqrt{121}-\sqrt{1}=11-1=10\)

Lại có: \(\dfrac{1}{\sqrt{k}}=\dfrac{2}{2\sqrt{k}}>\dfrac{2}{\sqrt{k+1}+\sqrt{k}}\left(k>1\right)\)

\(\Leftrightarrow\dfrac{1}{\sqrt{k}}>\dfrac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{k+1-k}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)

Áp dụng đánh giá trên vào B ta có:

\(B>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)

\(=1+2\left(\sqrt{36}-\sqrt{2}\right)>1+2\left(6-1\right)=10\)

Suy ra \(A=10< B\Rightarrow A< B\)


Các câu hỏi tương tự
hello sun
Xem chi tiết
Nguyễn Thị Hà Uyên
Xem chi tiết
bbiooo
Xem chi tiết
Ngọc Hà
Xem chi tiết
Đặng Nhật Linh
Xem chi tiết
Phương
Xem chi tiết
bbiooo
Xem chi tiết
ngọc linh
Xem chi tiết
Nguyễn Quỳnh Anhh
Xem chi tiết