\(A=\dfrac{n}{2n+1}=\dfrac{n\left(6n+3\right)}{\left(2n+1\right)\left(6n+3\right)}\dfrac{6n^2+3n}{\left(2n+1\right)\left(6n+3\right)}\)
\(B=\dfrac{3n+1}{6n+3}=\dfrac{\left(3n+1\right)\left(2n+1\right)}{\left(6n+3\right)\left(2n+1\right)}=\dfrac{6n^2+5n+1}{\left(6n+3\right)\left(2n+1\right)}\)
Lại có :
\(6n^2+3n< 6n^2+5n+1\)
\(\Leftrightarrow A< B\)
A=n2n+1=n(6n+3)(2n+1)(6n+3)6n2+3n(2n+1)(6n+3)
B=3n+16n+3=(3n+1)(2n+1)(6n+3)(2n+1)=6n2+5n+1(6n+3)(2n+1)
Lại có :
6n2+3n<6n2+5n+1