e, D = 512+1 /513+ 1 < 1 => 512+1/ 513+1 < 512+1+4/ 513+1+4
= 512+5/ 513+5 = 5. (511+1) / 5. (512+1) = 511+1 / 512+1= E
Vậy D < E
e, D = 512+1 /513+ 1 < 1 => 512+1/ 513+1 < 512+1+4/ 513+1+4
= 512+5/ 513+5 = 5. (511+1) / 5. (512+1) = 511+1 / 512+1= E
Vậy D < E
Bài 1. Chứng tỏ rằng: B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}< 1\)
Bài 2. so sánh : A=\(\dfrac{2011+2012}{2012+2013}\)
và B=\(\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
Bài 3. Rút gọn : B= \(\left(1-\dfrac{1}{1}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)
Bài 4. Rút gọn biểu thức : A= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
Bài 5. Tìm số nguyên \(\pi\) sao cho \(\pi+5\) chia hết cho \(\pi-2\)
HELP ME!!!! MÌNH TICK CHO HA
bài 1 : so sánh :
a) \(\dfrac{23}{21}\)và\(\dfrac{21}{23}\)
b)\(\dfrac{19}{26}\)và \(\dfrac{21}{25}\)
bài 2 : sắp sếp các phân số sau từ bé đến lớn :
a)\(\dfrac{7}{36};\dfrac{24}{36};\dfrac{13}{36};\dfrac{1}{36};\dfrac{43}{36};\dfrac{36}{36}\)
b)\(\dfrac{-3}{10};\dfrac{-31}{100};\dfrac{-297}{1000};\dfrac{10000}{-3056}\)
c)\(\dfrac{13}{20};\dfrac{7}{20};\dfrac{9}{4};\dfrac{2}{5};\dfrac{1}{2}\)
d)\(\dfrac{13}{21};\dfrac{152}{17};\dfrac{13}{17};\dfrac{-5}{21}\)
e)\(\dfrac{-1}{2};\dfrac{3}{-4};\dfrac{-2}{3};\dfrac{4}{-5}\)
bài 1 : so sánh phân số sau:
a) \(\dfrac{18}{91}\)và\(\dfrac{23}{114}\)
b)\(\dfrac{21}{52}\)và\(\dfrac{213}{523}\)
bài 2:so sánh
a)\(\dfrac{n}{n+1}\)và\(\dfrac{n+2}{n+3}\)
b)\(\dfrac{n}{n+3}\)và\(\dfrac{n-1}{n+4}\)
c)\(\dfrac{n}{2n+1}\)và \(\dfrac{3n+1}{6n+3}\)
bài 3: so sánh A và B
a)\(A=\dfrac{20}{39}+\dfrac{22}{27}+\dfrac{18}{43}\)
\(B=\dfrac{14}{39}+\dfrac{22}{29}+\dfrac{18}{14}\)
b)\(A=\dfrac{10^{1992}+1}{10^{1991}+1}\)
\(B=\dfrac{10^{1993}+1}{10^{1992}+1}\)
c)\(A=\dfrac{10^7+5}{10^7-8}\)
\(B=\dfrac{10^8+6}{10^8-7}\)
a)\(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{7}_{ }+\dfrac{5}{-8}\)
b)\(\dfrac{3}{17}+\dfrac{-5}{13}+\dfrac{-18}{35}+\dfrac{14}{17}+\dfrac{17}{-35}_{ }+\dfrac{-8}{13}\)
c)\(\dfrac{-3}{8}+\dfrac{12}{25}+\dfrac{5}{-8}+\dfrac{2}{-5}+\dfrac{13}{25}\)
d)\(\dfrac{-5}{21}+\left(\dfrac{-16}{21}+1\right)\)
e)\(\dfrac{-3}{17}+\left(\dfrac{2}{3}+\dfrac{3}{17}\right)\)
f)\(\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)
Cho A= \(\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{11}{5^{12}}\) với n\(\in N\)
Chứng minh rằng a < \(\dfrac{1}{16}\)
1.So Sánh
a) A=\(\dfrac{11}{2017}+\dfrac{4}{2019}và\) B=\(\dfrac{10}{2017}+\dfrac{10}{2019}\)
b) M=\(\dfrac{1}{5}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{30}+\dfrac{1}{61}+\dfrac{1}{62}và\dfrac{1}{2}\)
c) E=\(\dfrac{4116-14}{10290-35}và\) K=\(\dfrac{2929-101}{2.1919+404}\)
cho :
\(\dfrac{\dfrac{2}{3}n+\dfrac{1}{5}\cdot\dfrac{3}{7}+\dfrac{1}{7}\cdot\dfrac{3}{10}+\dfrac{1}{3}n-\dfrac{1}{14}+\dfrac{33}{35}}{\dfrac{2}{3}\cdot\left(3n+\dfrac{3}{5}\right)\dfrac{14}{15}+\dfrac{1}{3}}\)
a, Hãy rút gọn A.
b,Tìm giá trị của A khi n =\(\dfrac{-1}{5}\)
c,Tìm n để A nhận giá trị là \(\dfrac{2}{5}\)
d,Tìm n để 2A thuộc Z
Tìm x:
a)\(2016x+\left(\dfrac{7}{12}+\dfrac{4}{21}+\dfrac{2}{24}+\dfrac{11}{30}+\dfrac{3}{40}+\dfrac{15}{56}\right)-\left(\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}\right)=0\)
b\(\dfrac{2x-1}{x+2015}-\dfrac{4025}{x+2017}=\dfrac{x-2014}{2x-4036}-\dfrac{x-2013}{2x-4030}\) (x thuộc N)
c)\(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{4016}{2007}\)
AI GIÚP MK VỚI MK TICK CHO
n! = 1.2.3.4.....n (\(n\in N\)*; n\(\ge\)2)
Chứng minh \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+......+\dfrac{2013}{2014!}< 1\)