a)1020 và 9010
Ta có: 1020 =(102)10=10010
Vì 10010>9010 nên 1020>9010
b)(-5)30 và (-3)30
Vì -5<-3 nên (-5)30<(-3)30
b) (-5)30 và (-3)30
Ta có: (-5)30=530
(-3)30=330
Vì 5>3 nên (-5)30>(-3)30
a)Ta có : \(10^{20}=\left(10^2\right)^{10}=100^{10}\)
Vì \(100^{10}>90^{10}\Rightarrow10^{20}>90^{10}\)
b)Ta có: \(\left(-5\right)^{30}=\left[\left(-5\right)^2\right]^{15}=25^{15}\)
\(\left(-3\right)^{30}=\left[\left(-3\right)^2\right]^{15}=9^{15}\)
Vì \(25^{15}>9^{15}\Rightarrow\left(-5\right)^{30}>\left(-3\right)^{30}\)
c)Ta có :\(32^9=\left(2^5\right)^9=2^{45}>2^{42}=\left(2^6\right)^7=64^7\\ 6^{13}< 6^{14}=\left(6^2\right)^7=36^7\)
Vì \(2^{45}>64^7>36^7>6^{13}\Rightarrow2^{45}>6^{13}\Rightarrow32^9>6^{13}\)
Vậy \(\left(-32\right)^9>\left(-6\right)^{13}\)
\(a)\)
\(10^{20}=\left(10^2\right)^{10}=100^{10}\)
\(100^{10}>90^{100}\Leftrightarrow10^{20}>90^{10}\)
\(b) \)
\(\left(-5\right)^{30}=\left[\left(-5\right)^2\right]^{15}=25^{15}\)
\(\left(-3\right)^{30}=\left[\left(-3\right)^2\right]^{15}=9^{15}\)
\(25^{15}>9^{15}\Leftrightarrow\left(-5\right)^{30}>\left(-3\right)^{30}\)